

Advanced Optimization Capabilities in SU2 for the Design of a Low-Boom Flight Demonstrator

Sonic Boom Activities IV – Low Sonic Boom Flight Demonstration AIAA Aviation 2014 Atlanta, GA June 17, 2014

Juan J. Alonso, Francisco Palacios, Trent Lukaczyk
Department of Aeronautics & Astronautics
Stanford University
Stanford, CA 94305, U.S.A.

Outline

- The challenge of low-boom design
- Regularizing the design process
- N+2 vehicle design efforts
- Low-Boom Flight Demonstrator ongoing efforts
- Conclusions & future work

Outline

- The challenge of low-boom design
- Regularizing the design process
- N+2 vehicle design efforts
- Low-Boom Flight Demonstrator ongoing efforts
- Conclusions & future work

aerospace design lab

Classical Sonic Boom Theory

- Based on classical, linearized supersonic flow
- Parameterization of the F-function (near field pressure distribution) using 5 parameters
- Analytic optimization
- Drag impact of boom minimization not considered

But

- Tremendous physical insight
- Actual usable results:
 - Minimum pressure rise/ overpressure/impulse
 - Target area distributions

$$\Delta p \propto rac{W_{aircraft}}{L^{3/2}}$$

From: Darden, C., AIAA J. Aircraft, vol. 14, no. 6, 1977

Why Is Low-Boom Design Difficult?

Coefficient of Drag, CD, vs. radii of two fuselage stations

Why Is Low-Boom Design Difficult? (2)

Ground boom loudness vs. radii of two fuselage stations (two different

Outline

- The challenge of low-boom design
- Regularizing the design process
- N+2 vehicle design efforts
- Low-Boom Flight Demonstrator ongoing efforts
- Conclusions & future work

aerospace**design**lab

Regularization: Equivalent Area **Distributions**

CFD-based equivalent area inverse design

Note that multiple $A_e(x;\theta)$ need to be accounted for

N+2 Supersonic Passenger Jet Concept

Reduce Boom Noise, Reduce Drag, Maintain Lift, Structure, Propulsion Integration

Fully-Parallel Shape Optimization Tools

Direct solver, adjoint solver, mesh deformation, grid adaptation, fluid/structure simulation, python wrappers...and much more Under active development by the Aerospace Design Lab http://su2.stanford.edu

SU² Ver. 3.2 will be released during the Aviation 2014 Conference, 10,000+ downloads to date (May 2014)

Analysis / sensitivity procedure

Surface sensitivities using adjoint methods

The fluid domain is typically bounded by a disconnected boundary that is divided into a "far-field" component, and a solid wall boundary.

We further subdivide the fluid domain into two subdomains separated by a "near-field" boundary.

We are interested in sensitivities of cost functions of the kind

$$J = \int_{S} \vec{d} \cdot (P\vec{n}_S) ds + \left(\int_{\Gamma_{nf}} g(x, P) ds \right) = \int_{S} j_S ds + \int_{\Gamma_{nf}} j_{nf} ds,$$

where P is the value of the static pressure, and \vec{d} is an arbitrary constant vector to be defined later on.

S. K. Nadarajah, J. J. Alonso, and A. Jameson, "Sonic Boom Reduction using an Adjoint Method for Wing-Body Configurations in Supersonic Flow", AIAA Paper 2002-5547, 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Conference, September 4-6, 2002, Atlanta, GA.

Surface sensitivities using adjoint methods

The last step is to subtract the previous equations to obtain the complete variation of the functional

$$\delta J = \int_{S} (\vec{d} \cdot \vec{n}_{S}) \delta P \, ds - \int_{S} (\vec{n}_{S} \cdot \vec{\varphi}) \delta P \, ds + \int_{\Gamma_{nf}} \frac{\partial g(x, P)}{\partial P} \delta P \, ds$$
$$- \int_{\Gamma_{nf}} \Delta \Psi \left(\vec{n}_{nf} \vec{A} \right) \delta U \, ds + \int_{S} \left(\vec{d} \cdot \vec{\nabla} P + (\partial_{n} \vec{v} \cdot \vec{n}_{S}) \, \vartheta + \nabla_{S} (\vec{v} \, \vartheta) \right) \delta S \, ds.$$

And solving the adjoint equations subject to appropriate boundary conditions

$$\begin{cases} \vec{n}_S \cdot \vec{\varphi} = \vec{d} \cdot \vec{n}_S \\ \vec{\nabla} \Psi \left(\vec{n}_{nf} \cdot \vec{A} \right) = \frac{\partial g(x, P)}{\partial P} = h(x, P), \end{cases}$$

to obtain the sensitivity of the cost function with respect to the motion of each and every point on the surface of the mesh = surface shape sensitivities

$$\delta J = \int_{S} \left(\vec{d} \cdot \vec{\nabla} P + (\partial_{n} \vec{v} \cdot \vec{n}_{S}) \vartheta + \nabla_{s} (\vec{v} \vartheta) \right) \delta S \, ds = \int_{S} \frac{\partial J}{\partial S} \delta S \, ds.$$

Adj. formulation using equiv. area

Equivalent area adjoint derivation

The equivalent area is the Abel transform of the NF pressure distribution

$$A_e(x;\theta) = \int_0^x C(P - P_\infty)(x - t)^{1/2} dt,$$

We are interested in the L-2 norm of the difference between the area and a target:

$$J = \sum_{i=0}^{N-1} \omega_i \left[A_e(x_i) - A_t(x_i) \right]^2$$

A variation in this cost function can be written as

$$\delta J = \sum_{i=0}^{N-1} 2\omega_i \left[A_e(x_i) - A_t(x_i)\right] \delta A_e(x_i.)$$
 using the short-hand notation $\delta A_e(x) = \int_0^x C(x-t)^{1/2} \delta P \, dt.$

The key question is: can we handle this kind of cost function using the methodology described earlier?

Adj. formulation using equiv. area

Equivalent area adjoint derivation

Fortunately, **the answer is YES**. With some algebra...

$$\delta J = \sum_{i=0}^{N-1} \left[2\omega_i \left[A_e(x_i) - A_t(x_i) \right] \sum_{j=0}^{i-1} \int_{x_j}^{x_{j+1}} C(x_i - x)^{1/2} \delta P \, dx \right],$$

where $\Delta A_e(x_i) = 2\omega_i \left[A_e(x_i) - A_t(x_i) \right] C$.

And the variation of the objective function can be written as

$$\delta J = \sum_{j=0}^{N-2} \int_{x_j}^{x_{j+1}} \sum_{i=j+1}^{N-1} \left(\Delta A_e(x_i) (x_i - x)^{1/2} \right) \delta P \, dx.$$

The adjoint boundary conditions that eliminate the dependence on the fluid flow variation in the inverse equiv. area shape design problem is:

$$\vec{\nabla} \Psi \left(\vec{n}_{nf} \cdot \vec{A} \right) = h(x, P)$$
 where
$$h(x, P) = \begin{cases} 0 & \text{, if } -L < x < x_0, \\ \sum_{i=j+1}^{N-1} \Delta A_e(x_i) (x_i - x)^{1/2} & \text{, if } x_0 \le x \le x_{N-1}, \\ 0 & \text{, if } x_{N-1} < x < L, \end{cases}$$

A_e Design Using Multiple Azimuthal Angles

2 Free-Form Def. boxes:
Fuselage FFD
- Degrees 4x1x1
- 20 control Points
Main wing FFD
- Degrees 3x4x1
- 40 control Points

Geometry: 1043

Cells: 4,819,934. Nodes: 1,192,791 Mach number:1.7. Angle of attack: 2.1 Free-stream pressure: 15,473.81 Pa Free-stream temperature: 216.65 K

Multi-objective minimization problem with constraints (min C_I , min C_{Mv}).

$$OF = \alpha C_D + (1.0 - \alpha) \sum_{\phi=0^{\circ}}^{\phi=60^{\circ}} (EA - EA_{baseline})^2$$

Outline

- The challenge of low-boom design
- Regularizing the design process
- N+2 vehicle design efforts
- Low-Boom Flight Demonstrator ongoing efforts
- Conclusions & future work

Direct and Adjoint Simulations with Engines

Configuration Evolution

Configuration 1044-x
Phase II going-fwd

Recovering 1044-1 Ae Starting from 1044-3b

It is possible to recover the boom performance after including the structurallymotivated and engine modifications to the baseline aerodynamic shape?

Comparison of 1044-1 and 1044-3b

- LM 1044-3b was modified to take advantage of better wing-body blending, and improved load paths through aft strut
- Engine nacelle/nozzle design also updated based on work by GE

Optimization Problem Description

$$Min. J(x)$$

$$x \in \mathbb{R}^{\mathbb{N}}$$

s.t.
$$C_L(x) > 0.136$$

- Ma = 1.7, AoA = 2.1deg,
 H = 50,000 ft
- Recover 1044-1 target equivalent area distribution
- Near-field at 2 body lengths
- Maintain minimum lift
- Free-Form Deformation (FFD) design variables

$$J = \sum_{k=0}^{M} \sum_{i=0}^{N-1} \omega_{ik} \left[A_e(x_i, \theta_k) - A_t(x_i, \theta_k) \right]^2$$

- Multiple azimuth formulation maintains off-track performance
- Azimuth angle ranges: 0° to 60°, 2° increments

1044-3b Design Parameterization

* Mirrored half-body shown

- Total of 74 free-form deformation control points available
- Upper/Lower design variable bounds used to avoid non-physical geometry

Optimization History

12DV: Tail

24DV: Tail, Aft Deck

74DV: Tail, Aft Deck, Main Wing, Fuselage,

scaled

74DV: Tail, Aft Deck, Main Wing, Fuselage, un-scaled

SLSQP Gradient-Based Optimization

Normally objective and constraint data is scaled before given to optimizer

In this study, un-scaled values found larger improvements

Baseline and Optimized Shape (74 DV un-scaled)

- Main wing dihedral increased, trailing edge de-cambered
- Tail angle of attack increased near root
- Fuselage volume increased

Optimization History

- 85.5% Reduction in Equivalent Area
 Objective
- +1.8% CL, +1.1% CD
- Drag may be minimized by a second optimization with Ae and CL constraints or an optimization with multiple constraints

Initial and Final Surface Contours

Mach Number

Equivalent Area Distribution Comparison

Nearfield Equivalent Area Distributions Selected Azimuth Angles

Comparison of Ground Boom signatures

LM 1044-1, -3b and -3b OPTIMIZED configurations

Phi = 50 deg

Outline

- The challenge of low-boom design
- Regularizing the design process
- N+2 vehicle design efforts
- Low-Boom Flight Demonstrator ongoing efforts
- Conclusions & future work

Conclusions

- A number of recent "firsts"
 - Full configuration (75 pax) with a shaped boom signature (front and back; all azimuthal angles)
 - Realizable vehicle (design continues as we speak) to be used as a low-boom flight demonstrator
- Designs enabled by:
 - Advanced CFD and adjoints
 - Better understanding of the design space variations
 - A completely integrated unstructured capability, SU²
- Next steps:
 - Finalize design of LBFD
 - Construct approaches to reduce the size of the design problem

Active Subspace

"A low-dimensional subspace of the inputs that captures global trends of the objective"

- Works by finding eigenvectors of objective gradients
- Comparable to Principal Components Analysis
 - PCA: reduce output space dimension
 - Active Subspace: reduce input space dimension

Constantine, P. G., Dow, E., and Wang, Q., "Active subspace methods in theory and practice: applications to kriging surfaces," 2013.

aerospacedesignlab

N+2 Active Subspaces for Lift

N+2 Active Subspaces for Drag

N+2 Active Subspaces for Equiv Area

Thanks a lot for your attention!

Questions & Answers

More details in http://su2.stanford.edu/